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Abstract-Experimental results are presented for the heat transfer across a horizontal layer of liquid 
sodium heated from below. The experimetits show that up to a Rayleigh number of Ra N 7000 heat is 
mainly transferred by conduction for this low Prandtl number fluid. Beyond this threshold value the heat 
transport by convection increases significantly. For higher values of the Rayleigh number the measured 
Nusselt numbers follow a power law Nu N R&’ which is slightly smaller than the one predicted for the 

so-called flywheel convection as suggested by Jones et al. [J. Fluid Mech. 73,353-388 (1976)]. 

1. INTRODUCTION 

THE HEAT transport through plane liquid layers heated 
from below has received considerable attention, both 
experimentally and theoretically for moderate and 
high Prandtl numbers. The existing experimental 
work is discussed in some detail, by O’Toole and 
Silveston [I], Rossby [2] and more recently by Threl- 
fall [3] among others. Numerical simulation of the 
three-dimensional convection and heat transfer prob- 
lem has been performed only in a limited number of 
cases and for very few values of the Prandtl number 
mostly for air with Pr N 0.71. Such calculations have 
been published by Lipps [4], Veltishchev and Zelin [5], 
Grijtzbach [6], and McLaughlin and Orszag [7]. The 
limitations of storage capacity and the computational 
speed of even very advanced computers still render 
the accurate prediction of the natural convection in 
extended layers at high Rayleigh numbers a difficult 
task. Nevertheless, there are experimental and theor- 
etical data available for a comparative evaluation. The 
situation is much more unfavourable for the case of 
very small Prandtl numbers typically for liquid metal 
flow with Pr < 0.025 as shown by Meneguzzi et al. [8]. 
Although this kind of flow is of considerable technical 
importance, precise experimental data for heat trans- 
fer are scarce. Thus, even simple and idealized theor- 
etical models published in the literature lack from 
comparison with experimental findings. The work 
presented is intended to reduce this deficiency of 
experimental data for heat transfer and the thermal 
structure of convection in liquid layers of very low 
Prandtl number, in our case a liquid sodium layer 
with Pr = 0.0058. 

Before we outline in detail the experimental pro- 
gram and procedure we summarize the relevant litera- 
ture of the problem. Globe and Dropkin [9] per- 
formed among other experiments some tests in 
mercury layers, Pr = 0.025, in a Rayleigh number 

range 1.5 x 10’ < Ra < 4 x 10’. They found that the 
measured heat transfer data for a mercury layer are 
represented by the empirical correlation for the 
Nusselt number Nu in the form 

Nu = 0.069Ra0.33 Pro.o74 (1.1) 

which-according to their findings-also holds for 
other liquids of higher Prandtl number in the range 
0.02 < Pr < 8750. The evaluated Nusselt numbers for 
mercury, however, show in the particular plot of 
experimental data noticeably lower values compared 
to the data of other liquids. 

McDonald and Connolly [lo] measured the heat 
transfer from a hot sodium pool to a downward facing 
horizontal plate. They derive the empirical relation- 
ship 

Nu = 0.0785Ra0.32 0.2) 

for the range of Rayleigh numbers 4.8 x lo6 < Ra < 
4 x 10’. The functional relationship of both formula 
(1.1) and (1.2) indicates by the i-power law that 
the heat transfer is governed by a fully developed 
turbulent convection in which external length scales 
are insignificant (see Howard [l 11). However, if in 
relationship (1.1) the value Pr = 0.004 for sodium 
under the particular test conditions of McDonald 
and Connolly is inserted the constant of propor- 
tionality is smaller by a factor of two compared to 
that in relationship (1.2). 

Kudryavtsev et al. [ 121 conduct heat transfer 
measurements in sodium using a cylindrical container 
of aspect ratio height/diameter, h/D = 1. For the 
range 2.5~10~~ RaPr < 8x lo3 they find the 
relationship 

Nu = 0.38(Ra Pr)“.33. (1.3) 

An evaluation of this formula for Pr = 0.0043 gives 
Nu = O.O~~RU’,~~. Based on empirical and rational 
arguments Kutateladze [13] proposes for the tur- 
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Subscripts 
tot total 

- 

bulent heat transfer in horizontal liquid layers the 
correlation 

,Q, = ,-,1(j(!a pr)o’33 
l+Pr 

(1.4) 

This formula evaluated for Pr = 0.0045 gives 
Nu = 0.026Ra0.33. 

In comparing the various relations for Rayleigh 
numbers Ra > 10’ it is noted that the functional 
behaviour of the proposed heat transfer correlations 
is the same in all cases given by the f-power law; 
however, the proportionality constants differ sig- 
nificantly. 

Accurate heat transfer experiments in a low Prandtl 
number liquid in a range of Rayleigh numbers 
lo3 < Ra < 5 x 1O’were performed by Rossby [2]. He 
used mercury, Pr = 0.025, as a test liquid. Rossby 
derived the following empirical correlation for his 
experimental data 

NM = 0.141Ra0 ls7. (1.5) 

As the range of application he gives 2 x 10” < Ra < 
5 x 105. This relationship differs from those given 
previously by the i-power law. A similar correlation 
is proposed by Kutateladze [13] for the heat trans- 
fer in laminar convection layers. 

Nu = 0.67 i&-‘T5 
l+Pr (1.6) 

For Pr = 0.025 this becomes NM = 0.26Ra0.“, which 
is 1.8 times larger than Rossby’s result. Moreover, 
Rossby claimed that he could not observe truly lami- 
nar convection in his test apparatus for any super- 
critical Rayleigh number. 

Recently Chiffaudel et al. [14] carried out precision 
experiments in a small box of dimension 50 x 34 x 8 
mm filled with mercury. They investigated particularly 
the transcritical steady state convection in the range 

C’ critical value 
cool cooling plate 
sod sodium 
Cl1 copper 
H heating plate. 

Greek symbols 

P coefficient of thermal expansion 

L 
cell shape parameter 
difference 

li thermal diffusion coefficient 
i heat conductivity 
): kinematic viscosity 
5 characteristic time scale. 

10J < Ra < 2.5 x 103. Their investigations were 
mainly aimed at confirming theoretical predictions 
for low Prandtl number two-dimensional convection 
which will be discussed below. 

These few examples of available experimental data 
sets for the heat transfer in liquid metal layers clearly 
indicate the inadequacy of accurate heat transfer 
experiments in the entire range of experimentally feas- 
ible Rayleigh numbers. 

This lack of reliable experimental data becomes 
more evident if we scrutinize the theoretical pre- 
dictions for natural convection in horizontal liquid 
layers. Schliiter et al. [ 151 indicated that after the onset 
of convection in the form of roll or polygonal cells the 
heat transfer depends strongly on the Prandtl number. 
They obtain analytically for the case of rigid hori- 
zontal boundaries 

Nu- 1 = (Ra- RaJPr’ i,, 
i 

(1.7) 

where Ra, is the critical Rayleigh number for onset of 
convection and y depends on the cell shape of the 
convection pattern. This relationship is derived with 
the aid of perturbation methods and is valid only in 
a very limited range of supercritical Rayleigh numbers 
if the values of the Prandtl number are very small. 
For the validity of equation (1.7) Jones et al. [16] 
require that 

It may be conjectured from equation (1.7) that the 
convective heat transfer in liquid metal layers may be 
very small even beyond the limits of a valid finite 
amplitude perturbation analysis. The question then 
may be raised: is there a threshold value of the 
Rayleigh number beyond which the convective 
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heat transport increases significantly when horizontal 
liquid layers with low Prandtl number are heated 
from below, and what is the correlation for the heat 
transfer function? 

These questions were considered in several numeri- 
cal and analytical investigations. Jones et al. [16] 
investigated the convective heat transfer in an axisym- 
metric cell with stress free boundaries everywhere and 
with isothermal horizontal but adiabatic vertical 
boundaries. They found for the limiting case Pr + 0 
a second critical Rayleigh number for the onset of 
convective heat transfer. Although &en below this 
second critical value there exists free convection in 
the liquid layer they claim that the convective heat 
transport is suppressed by a strong nonlinear effect of 
advection of momentum. Only when this inhibiting 
nonlinearity of momentum exchange vanishes by a 
particular alignment of streamlines and vorticity iso- 
lines, resembling that of a rigid body rotation, does 
the intensity of convection increase significantly and 
as a result the effective heat transfer. The authors call 
this observation the ‘flywheel’ effect. It is evident that 
such an effect may also occur in the case of rigid 
boundaries, if the local Reynolds number of the vel- 
ocity distribution becomes high enough to con- 
centrate the viscous dissipation into thin boundary 
layers near the walls, while in the interior domain rigid 
body rotation prevails. Recently, Mundinger [ 171 has 
repeated the numerical calculations of Jones et al. for 
rigid boundaries at the top and bottom of the heated 
layer and for stress free vertical boundaries. He 
obtained qualitatively similar results. The principal 
results of Jones et al. [16] have been confirmed by 
Proctor [ 181 by analytical calculations of two-dimen- 
sional natural convection in a horizontal circular cyl- 
inder heated at the lower semi-surface and cooled at 
its upper one. Proctor’s investigations were based on 
non-slip boundary conditions for the velocity and 
constant surface temperatures. His asymptotic solu- 
tions clearly demonstrate the occurrence of a balance 
between buoyancy and inertial forces for Pr -+ 0 and 
for Rayleigh numbers exceeding a second critical 
value. He also found that only beyond this second 
critical value the Nusselt number increases above the 
level of pure heat conduction. Clever and Busse [19] 
treated the same problem, namely two-dimensional 
convection in a horizontal layer, in two articles 
employing direct numerical simulation by spectral 
methods and analytical modelling. From their 
numerical calculations they concluded that for 
decreasing values of the Prandtl number the onset of 
a significant heat transport by convection occurs only 
for increasing supercritical Rayleigh numbers which 
seem to tend towards a limiting value. A second result 
of their two-dimensional calculation is that the 
Nusselt number becomes practically independent 
of the Prandtl number for Rayleigh numbers Ra > 
104. A comparison between the calculated Nusselt 
numbers and experimental findings of, for example, 
Krishnamurti [20] and Rossby [2] shows that there 

is a considerable qualitative discrepancy between the 
predictions of two-dimensional numerical simulations 
and the experimental data of three-dimensional con- 
vection in extended horizontal layers. Only recently 
published numerical results of Clever and Busse [2 l], 
which take into account three-dimensional flow, indi- 
cate that three-dimensional effects reduce the value 
of the predicted Nusselt number considerably and 
improve the comparison between measured and cal- 
culated data for the heat flux and the temperature. 

In their analytical investigation Busse and Clever 
[22] assumed that the bulk velocity field is equivalent 
to that of a rigid body rotation except in very thin 
boundary layers near the lower and upper boundary 
of the layer which they neglect. This model assump- 
tion corresponds to the flywheel idea of Jones et al. 
[ 161. Using an Oseen approximation in the heat trans- 
port equation they obtained the result that for very 
small Peclet numbers, Pe = (Ra Pr) ‘/’ << 1, the onset 
of convective heat transfer occurs only beyond a 
threshold Rayleigh number Ra,,. For two rigid iso- 
thermal boundaries of the layer this value is 

Ra,, = 7373. 

They also derived from their model an asymptotic 
relationship for the Nusselt number for very large 
Peclet numbers Pe >> 1 

Nu- 1 o ;(2Ra)OZI. (1.8) 

This relationship agrees well with the empirical 
relationship of Rossby [2]. Moreover it supports their 
numerical findings, namely, the heat transfer becomes 
independent of the Prandtl number for high values of 
the Rayleigh number. 

This survey of the relevant literature underlines the 
need for additional experimental investigations of the 
heat transfer mechanism. The experimental inves- 
tigations presented in this article are performed in 
order to validate existing theoretical findings and to 
reduce existing discrepancies between experiment and 
theory. 

2. EXPERIMENTAL EQUIPMENT AND 

TECHNIQUES 

2.1. Convection apparatus and measuring devices 
Two sets of experiments were performed. Screening 

tests were carried out in a smaller test chamber with 
simple instrumentation, while the main experiments 
were carried out in a well-instrumented larger test 
chamber. 

The test apparatus for the heat transfer experiment 
is depicted schematically in Fig. 1. The circular test 
chambers were 210 mm in diameter and 25.6 mm in 
height and 520 mm in diameter and 15 or 46 mm in 
height. Liquid sodium was used as the test fluid. The 
mean operational temperature of the sodium during 
the experiments was in the range 550-570 K. The 
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FIG. 1. Schematic drawing of the test apparatus for the main 
tests, diameter 500 mm, layer height 15.5 mm and 46.5 mm. 
1, resistance heater ; 2, 5, copper plates ; 3, sodium layer ; 
4. side ring of stainless steel; 6. side wall of boiling cooler: 

7, cooling coil. 

sodium layer was electrically heated from below by 
applying a maximum of 17 kW for the smaller, and 
40 kW of power for the larger, test chamber through 
spiral-wound heating conductors brazed to the lower 
side of a copper plate. For cooling the upper side of 
the sodium layer another copper plate was used from 
which the heat was removed either by a sodium 
cooling circuit or, as done in most of the experiments. 
by direct evaporative cooling at the upper surface of 
the cooling plate. Diphyl (Fa. Bayer, Leverkusen) was 
utilized as a synthetic liquid for evaporative cooling. 
Circular spacer rings of 15, 25 and 46 mm made of 
stainless steel formed the side walls of the test 
chamber. The outside of the entire test apparatus was 
thermally insulated by a 30 cm thick layer of fiber 
glass. In order to minimize heat losses from the heat- 
ing plate in the downward direction additional elec- 
trical heating coils were placed in the insulating 
material at the lower side. 

For measuring the temperature at the upper and 
lower boundaries of the layer boreholes were sunk 
radially into the copper plates and platinum resistance 
thermometers were inserted. For the main tests the 
depth of the boreholes, their position in the plates, 
and the distance of the borehole tips from the plate 
surface are listed in Table 1 and shown in Fig. 2. For 
the screening tests in the small test chamber (diameter 
210 mm, height 25.6 mm) the temperature difference 
was measured by two thermocouples only placed into 
boreholes of 40 mm in length drilled radially into the 
upper and lower copper plates. 

The experimental program required three different 
sets of data to be measured, i.e. the heating power, 

3 
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FIG. 2. Arrangement of platinum resistance thermometers 
Pt-100 in the heater and cooler plate, main tests. 

the local temperature differences across the layer at 
six positions and the temperature on the surface of 
the insulation at different positions. 

The electric power was measured with the aid of 

four precision resistances of 10 mQ each to an accu- 
racy of 1%. The surface temperatures of the sodium 
layer could only be determined indirectly. Resistance 
probes of the type Pt-100 with a diameter 1.6 mm and 
with a resolution of AT = + 0.0 1 K were inserted into 
tapered boreholes of 1.8 mm in diameter. Sources of 
errors in the measurements were local temperature 
inhomogeneities at the tip of the borehole and thermal 
contact resistance between the probe and copper wall 
which could not be precisely determined. Assuming 
that the probe sensor was positioned with an accuracy 
of Ahk0.05 mm and the temperature gradient in the 
copper plate was 0.05 K mm ’ at an average heat flux 
of about 2 W cm-’ the measuring error for the tem- 
perature amounts to AT = +0.0025 K. The effect of 
temperature inhomogeneity was neglected because of 
the high heat conductivity of the copper and the rela- 
tively large distance between the outside surface and 
the tip of the borehole. 

The six measuring acquisition systems and per- 

ipherals for the temperature probes were calibrated in 
pretests concerning their linearity and their tem- 
perature drift. Moreover, the temperature probes were 
adjusted to each other by comparison with a reference 
sensor. The calibration procedure was performed 

Table I. Position of Pt-100 resistance thermometers. main tests 

Position Heating plate Cooling plate 

I r=80mm S,, = 21.15 mm r=75mm S, = 26.80 mm 
2 r=95mm S,, = 21.25 mm r=90mm S,, = 26.87 mm 
3 r= 105mm S,,, = 21.40 mm r = 100 mm S, = 26.98 mm 
4 r = 155 mm SC” = 20.95 mm r = 150 mm S,, = 27.00 mm 
5 r = 205 mm S,, = 27.32 mm r = 200 mm SC. = 27.32 mm 
6 r = 255 mm S,, = 20.62 mm r = 250 mm SC. = 27.57 mm 
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under steady-state conditions for a heating power of 
1000 W. The calibration was usually repeated after a 
set of temperature data has been taken. The repro- 
ducibility of the calibration data proved to be within 
the bound of AT = + 0.05 K. 

In order to estimate the heat losses from the test 
apparatus to the outside, temperatures at various 
spots at the outer surface of the test chamber and on 
the surface of the thermal insulation as well as the 
room temperature were recorded simultaneously. 

All the experimental data were recorded and pro- 
cessed by an on-line microprocessor unit combined 
with an IBM-AT-PC. Details of this unit are described 
by Kek [23& 

2.2. Experimeniuiperfirmance and data evaluation 
It was determined that during the experiment spe- 

cial care had to be taken to achieve a quasi-homo- 
geneous temperature distribution in the heating and 
cooling plates. The measmements showed slight 
decreasing temperatures in radial direction along the 
heating plate of the order AT z 1 K at a heating power 
of 2000 W and a temperature difference across the 
layer of about AT < 20 K. The temperature variation 
at the cooling plate was even larger without special 
precautions being taken. In early tests it was deter- 
mined that the temperature inhomogeneities at the 
cooling plate could be practically eliminated by 
removing dissolved oxides from the sodium and by 
providing a complete wetting between the sodium and 
the walls of the test chamber. This was achieved by 
circulating the test fluid for several hours through cold 
traps in which the oxides were precipitated at cold 
surfaces outside the test chamber. Moreover, the mean 
temperature was raised significantly above the oper- 
ation temperature (AT m f 100 K) in order to achieve 
a complete wetting between the sodium and the chro- 
mium plated copper plates. 

To evaluate the heat transfer across the sodium 
layer accurately the heat losses from the test apparatus 
to the outside and across the steel rim were deter- 
mined. This was accomplished by recording the tem- 
perature in the copper plates, the surface temperatures 
of the test apparatus, and the temperature at the sur- 
face of the thermal insulation. The heat losses were 
calculated for the upward, downward, and vertical 
portions of the cylindrical surface of the insulation. 
The heat-flow rate through the steel rim was evaluated 
by direct conduction analysis. 

The calculated heat losses were validated for the 
case of pure heat conduction in the sodium layer at a 
heating power of 503 W. The calculated heat losses 
amounted to 196 W in this case compared to the total 
heat-flow rate through the sodium layer of 306 W. 
The evaluation of the Nusselt number gave Nu = 0.94 
and the state of pure heat conduction was predicted 
to within an error bound of 6%. This result provided 
the confidence that the heat-flow rate through the 
layer could be determined by subtracting the evalu- 

ated heat. losses from the measured total power input 
to the test apparatus. 

In order to present the average heat flux as a fimc- 
tion of the driving temperature difference across the 
sodium layer this temperature difference had to be 
determined from the measured temperature data. 
Since the temperature differences across the sodium 
layer were not directly measured but determined from 
the temperature measurement in the copper plates 
the following assumptions were made. It was assumed 
that by the design of the heating plate a homogeneous 
heat flux is imposed to the sodium layer. This heat 
flux is q = Q/A, where Q is the total power input and 
A is the horizontal surface of the sodium layer. If the 
distance of the top of probe j from the sodium surface 
is S&t)(j) then the temperature decrease from the 
probe tip to the layer surface in the heating plate at 
the location j is 

AT 

H 
(j) = g am 

A1,’ j=l 6, ,a--, (2.1) 

where I, is the heat conductivity of the copper. A 
corresponding expression is obtained for the tem- 
perature drop at the location j in the cooling plate. It 
is 

Using these expressions the temperature difference 
across the sodium layer is 

AT&j) = A.T,,(j)-AT,tj)-A~~,(j), (2.3) 

where AT,, is the measured tem~rature difference at 
location j between the thermocouples in the copper 
plates. 

A local heat transfer coefficient cl(j) according to 
Newton’s cooling law was defined by using the evalu- 
ated local temperature difference across the sodium 
layer 

Q = @(j)AAT,,(j). (2.4) 

The total heat transfer by conduction across the 
layer is 

(2.51 

where a,, is the heat conductivity of the sodium and 
h the height of the sodium layer. Using equations (2.4) 
and (2.5) the following expression for a local Nusselt 
number results : 

Nu(j)=-&$=ct(j)*~. 
L sod 

(2.6) 

Because the temperature was not completely uni- 
form across the heating and cooling plates the cor- 
responding inhomogeneous local heat fluxes could not 
be determined. Therefore an average heat transfer 
coefficient Oz was introduced and defined as 
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ZX=:,$,~$&, j= I,...,6 (2.7) 

where for the local heat flux q(j) the average value 
4 = Q/A was introduced. Thus the heat transfer 
coefficient is 

and the average Nusselt number is 

,liu,$. (2.9) 

Furthermore the average Rayleigh number was 
defined as 

3; &E,, 
sad, ,j = I,. ,6, (2.10) 

lCV 

where /I is the coefficient of thermal expansion, K the 
thermal diffusivity, and v the kinematic viscosity of 
sodium at its mean temperature. ATsod is the arith- 
metic mean value of the local temperature differences 
across the layer.? For the sake of simplicity the bars 
in the notation of the dimensionless groups and of 
other mean values are dropped in the following. 

3. EXPERIMENTAL RESULTS 

3.1. Heat transjkr measurements 
The results of the heat transfer measurements are 

shown in Fig. 3 according to equations (2.4) and (2.7). 
The plots in Fig. 3 contain all the measured data 

for the experiments with the layer heights 15.5, 25.6 
and 46.5 mm. For comparison the dashed lines in 
the plots represent the calculated heat flow rate by 
conduction only. It can be seen that in the case of the 
15.5 mm layer height the measured heat flow differs 
only slightly from the value obtained from the pure 
heat conduction solution. In the case of the 46.5 mm 
layer height the actual heat flow is significantly larger 
than that obtained from the pure heat conduction 
solution for higher temperature differences across the 
layer, i.e. for AT > 2 K. 

A general representation of the measured data is 
shown in Fig. 4, where the overall Nusselt number is 
plotted vs the corresponding overall Rdyleigh 
number. The two dimensionless groups are deter- 
mined according to the defining equations (2.9) and 
(2.10) using the mean values of the heat transfer 
coefficient SI and the mean temperature difference AT 

across the layer. 
In the low Rayleigh number range 1500 < Ra < 

8500 the value of the Nusselt number is close to 
unity. The heat transfer is governed in this range 
by heat conduction. Beyond a threshold value of 

tin the screening test with just one thermocouple in the 
heating and the cooling plate the evaluation of the tem- 
perature difference across the sodium layer is straight- 
forward. The averaging process of equation (2.7) is reduced 
to one term. 

(4 

FIG. 3. Mean value of the heat flux as a function of the 
temperature difference across the sodium layer; (a) layer 
height h = 15.5 cm; (b) layer height h = 25.6 mm (screen- 
ing test) : (c) layer height h = 46.5 mm ; calculated 

conduction heat flux. 

Ra E 8000, a significant increase of the Nusselt 
number with increasing Rayleigh number is observed 
which indicates the growing contribution of con- 
vective transport to the total heat transfer. The general 
shape of the data plot in the range Ra > 8000 can 
be characterized by a turning point and a negative 
curvature. Similar properties of the heat transfer func- 
tion Nu (Ra) for low Prandtl number liquids have been 
found by Jones et al. [16], Busse and Clever [22] and 
recently by Mundinger [17]. Some of their results are 
shown in Fig. 7. A more detailed discussion is given 
in Section 3.2. 

For engineering applications it is useful to represent 
the data sequence in Fig. 4 by correlations in terms 
of fractional powers of the Rayleigh number. Such 
correlations are obtained by least-square fit interp- 
olation of the data points. The numerical results of 
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FIG. 4. Nusselt number as a function of the Rayleigh number, Prandtl number Pr = 0.0058, V layer height 
15.5 mm, layer height 25.6 mm (screening tests), layer height 46.5 mm. 

Jones et al. [ 161, Clever and Busse [ 191 and Mundinger 
[ 171 as shown in Fig. 7 suggest three different Rayleigh 
number ranges for an interpolation of the exper- 
imental data, namely a range of prevailing conduction 
heat transfer, a transition range of strongly increasing 
convective heat transport starting near the turning 
point in the Nusselt-Rayleigh number curve and an 
asymptotic range. The bounds of these ranges are 
not sharply defined. The following data ranges have 
been chosen: 1600 < Ra < 7000, lo4 < Ra < 5 x 104, 
4 x lo4 < Ra < 24 x 104. The results of the fitting pro- 
cedure are shown in Fig. 5. Only data of the main 
tests were used. There is first the range 1600 < Ra < 
7000 of prevailing heat transfer by conduction 

Nu 

5 

i 

L 
1 OJ 

z 

Nu = 0.59Ra0.072, 1600 < Ra < 7000. (3.1) 

This correlation was derived from a data sequence 
obtained in an experiment with particularly uniform 
temperature distribution on the heating and cooling 
plates. More details of this experiment are given 
below. This correlation demonstrates that the con- 
vective heat transfer at the relatively high supercritical 
Rayleigh number Ra x 7000 is less than 10% of the 
total heat transfer, a surprisingly low value. 

A transition range follows, where heat transfer by 
convection is promoted according to Jones et al. [16] 
by inertial forces. We define this transition range as 
lo4 < Ra < 5 x 104, and we get 

FIG. 5. Fitting curves to the data sequences of the main tests. 
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Ra 

FIG. 6. Experimental data for the Nusselt number vs Rayleigh number relationship. 0 l n n @ > b 
V data compiled by O’Toole and Silverston [I], + data from measurements of Rossby [2], * data from 

this work. 

Nu = 0.0616Ra” “, IO4 < Ra < 5 x 10“. (3.2) 

For the remaining range of Rayleigh numbers the 
exponential fit results in the correlation 

Nu = 0.20Ra0-*(‘, 4 x 10” < Ra <: 2.5 x IO’. (3.3) 

It is noted here that the effectiveness of the heat 
transfer by convection reduces beyond a transition 
range as the power of the Rayleigh number reduces 
from 0.31 to 0.20. A similar procedure of piecewise 
fitting the experimental heat transfer data has been 
adopted by other researchers in the past, for example, 
see O’Toole and Silveston [I]. 

In order to determine the threshold values of the 
Rayleigh numbers for onset of convection and onset 
of significant heat transfer by convection the fitted 
curves are extrapolated to Nu = 1. The critical 
Rayleigh numbers are then defined by the inter- 

, IO ,Oj.$ 
c 

FIG. 7. Calculated Nusselt numbers as a function of the 
reduced Rayleigh number r = Ra/Ra,, , two-dimensional 
numerical calculations. ~. PI = 0.01. Jones et (I/. [lb]; 

~~ Pr = 0.05 : Pr = 0.005, Mundinger [ 171. -~-- 
Pr = 0.01, Clever and Busse [19]. 

section points of the fitted curves I and I1 and the 
abscissa Nu = 1 in Fig. 6. The result is 

Ra,, = 1819, Ru,.~ = 7125. (3.4) 

It is noted here that in order to obtain the fitted 
curve in the low Rayleigh number range 1600 < 
Ra < 7000 a set of 23 experimental data points of one 
particular experimental run has been chosen. In 
this run special care was taken to provide a tem- 
perature distribution across the heating and cooling 
plates as uniform as possible. This was achieved by a 
special cleaning procedure for the liquid sodium in 
the test chamber to remove uncontrolled thin oxide 
layers from the surface of the cooling plates which 
lasted several days. The data sets of other earlier 
experimental runs suffer from experimental errors of 
the order of 10% due to local temperature inhomo- 
geneities which did not allow a proper evaiuation of 
a critical Rayleigh number for onset of convection. 
The critical Rayleigh number for onset of convection 
obtained from equation (3.1) is about 6% higher than 
the value Ra,. = 1708 according to the theory for 
perfectly conducting horizontal boundaries. A better 
result for Ra,., is obtained, when the evaluated data 
for the Nusselt and Rayleigh number are subjected to 
a quadratic least-square fit. In this case Ru,, = 1717 
is obtained. 

3.2. Discussion of the results 

The striking result of the heat transfer measure- 
ments is the peculiar shape of the Nusselt-Rayleigh 
number function in the range of investigation. A 
slow increase of the Nusselt number in the range 
1.6 x IO3 < Ru < 8 x IO3 is followed by a signifi- 
cant growth rate for the Rayleigh numbers 
8 x 10’ < Ru < 2.5 x 105. This effect is obviously 
related only to very low values of the Prandtl number 
as can be seen from Fig. 6. This figure shows exper- 
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imental data of various authors compiled by O’Toole 
and Silveston [I], data of Rossby [2] and data from 
this work. The functional dependence of the Nusselt- 
Rayleigh number graph for sodium with Pr = 0.0058 
is in qualitative agreement with the shape of the cal- 
culated curves of Jones et al. [16], Clever and Busse 
[19] and Mundinger [17]. The calculated curves are 
shown in Fig. 7. The cures show a delayed increase of 
the Nusselt numbers in the low range of supercriti- 
cal Rayleigh numbers. Furthermore, the calculated 
curves contain a turning point and beyond which a 
negative curvature. These properties are also present 
in the data sequence of the present experiments as 
shown in Fig. 4. There are, however, considerable 
quantitative discrepancies between the calculated and 
measured data. The calculations signi&antly under- 
predict the second critical Rayleigh number for onset 
of convective heat transfer and considerably over- 
predict the amount of convected heat. It is conjectured 
that these discrepancies originate from very restrictive 
assumptions made for the calculations, namely, the 
existence of two-dimensional steady roll patterns only. 
In the present experiments three-dimensional cellular 
patterns are certainly present because of the large 
dimension of the layers and, moreover, the convection 
is always in a fluctuating mode, i.e. time dependent. It 
has been known since the investigations of Malkus 
and Veronis [24] that two-~mensional convection 
patterns are more efficient in heat transport than 
three-dimensional patterns. More recent inves- 
tigations of Clever and Busse [21] on three-dimen- 
sional, time-dependent convection strongly support 
this conclusion. The present experimental results 
differ also q~nti~tively from the experimental find- 
ings of Chiffaudel et al. 1141. In their small box test 
cell with mercury as the test liquid (Pr - 0.025) they 
arranged a two-dimensional convection pattern by 
choosing an appropriate aspect ratio. They confirm 
by their heat transfer measurements semiquanti- 
tatively the calculated Nusselt numbers of Jones et 
al. [ 161 and Proctor [ 181 in a Rayleigh number range 
lo3 c Ra < 2.5 x 103. They also define a second criti- 
cal Rayleigh number Ra, by the same procedure as in 
this work. They find Ra,, = l.O6Ra,. This value is 
of the order of the calculated values for Pr = 0.025 
presented in Fig. 7. A detailed comparison with the 
present results suggests once more a significant in%- 
ence of the three-dimensional effects in this inves- 
tigation. 

Jones et al. [ 161 and Proctor [ 181 concluded from 
their calculations that for the limiting case Pr -+ 0 a 
second critical Rayieigh number exists for the onset 
of significant convective heat transport. Busse and 
Clever [22] predicted this value analytically as 
Ra,, = 7373. The threshold Rayleigh number 
Rac2 x 7125 obtained from the present experiments is 
surprisingly close to the value of Busse and Clever 
[22]. However, it differs significantly from cor- 
responding values suggested by the n~e~cally deter- 
mined curves in Fig. 7. More theoretical work into 

three-dimensional effects is needed to clarify this 
quanti~tive discrepancy. Nevertheless, since all the 
authors base their analysis for the limiting case Pr = 0 
on the balance between the inertia and the buoyancy 
force in the momentum equations we conjucture that 
the experimentally determined shape of our Nu(Ra) 
curve as well as the so-defined second critical 
Rayieigh number is to be explained by the same 
physical effect. 

The model calculations for the heat transfer of 
Busse and Clever [22] based on the ‘flywheel’ assump- 
tion are to some extent supported by the present 
measurements in the high Rayleigh number range. If 
one assumes a rigid body rotation for the vortex flow 
in the convection cell these authors obtain for high 
values of the product Ra * Pr the following relation 
for the heat transfer 

Nu- 1 E $(2R@” = 0.175 x Ra’.“. (3.5) 

This relationship has to be compared with our 
correlation NU = 0.201 Ra’.” for Rayleigh numbers 
Ra > 4 x 104. In spite of the various assumptions and 
approximations used the two results clearly indicate 
a significantly reduced convective heat transport com- 
pared to the one in liquids of Prandtl numbers of the 
order one and higher. 

A plausible explanation for a power relationship 
for the heat transfer in low Prandtl number liquids 
was given by Jones et al. [16] using similitude theory. 
For high Rayleigh numbers the vortex flow in the 
convection cell develops boundary layers along the 
walls. For very low Prandtl numbers the thickness of 
the thermal boundary layer is significantly larger than 
the boundary layer of the flow field. Actually, the ratio 
of the boundary layer thicknesses should scale like 
6,/&w Pr’12, where 6, and 6, refer to the flow and 
temperature field thicknesses, respectively. Jones et al. 
argue that the heat transferred from the wall into the 
thermal boundary layer by conduction is completely 
convected from that boundary layer by the rigid body 
rotation of the bulk flow in the cell center. The char- 
acteristic velocity of the rigid body rotation is the 
buoyant velocity defined by external parameters 

v, = (BgATh) “*. The energy balance for the thermal 
boundary layer of a cell then gives : 

where ,l is the heat conductivity of the liquid, p its 
density and c its capacity. By rearranging the 
expression and by using the relation NU = h/6, they 
obtain 

Nu N (Ra- Pr)‘/4. (3.7) 

This power relation is compatible with the empirical 
correlation of this work and agrees well with the 
model relationship of Busse and Clever [22]. The argu- 
ments together with the experimental results support 



2804 V. KEK and U. M~LLEK 

the idea that viscous forces concentrated in the bound- 
ary layers are irrelevant for the overall heat transfer 
mechanism in this range of Rayleigh numbers and in 
the case of very small Prandtl numbers. 

Rossby [2] derived from his experiments with mer- 
cury layers an empirical relationship showing the 

functional dependence Nu - Ra0.“57 (see Section 1, 
equation (1.5)). However, the range of applicability 
for his correlation extends to very low Rayleigh num- 
bers. In particular, he does not find a distinct change 
in the slope of the Nusselt-Rayleigh number curve in 
the range Ra < 3 x 10”. 

Furthermore the present results do not indicate any 
improvement in heat transfer for Rayleigh numbers 
Ra > 105. Such an improvement was suggested by 
some researchers, for example, Globe and Dropkin 
[9], McDonald and Connolly [lo], Kudryavtsev rz 
(11. [12] in the form of an empirical correlation 
Na - Ra”‘. This functional dependence was also 
obtained from dimensional considerations taking into 
account boundary layer aspects and some simple ideas 
of turbulent flow such as mixing length scales and the 
law of the wall relation for the velocity and tem- 
perature distribution. Based on such considerations 

Kraichnan [25] and Long [26] derive for sufficiently 
high Rayleigh numbers and small Prandtl numbers 
the relation Nu = K(Ra Pv)“~, where the coefficient 

K may depend on the turbulent kinematic viscosity. 
This relationship holds only when the thickness of 
the turbulent boundary layer of the velocity is much 
smaller than the thickness of the heat conduction 

layer but larger than a comparative viscous sub- 
layer. Kraichnan derives the following limits for the 
validity of the :-power law for the heat transfer: 
(Ra Pr)“’ > 6 and Ra > 9500. He concludes fur- 

thermore that for (Ra PI)’ 2 < 6 the Nusselt number 
should be NU 2 1. These results are not compatible 
with our experimental findings, and the theoretical 

results of Jones er al.. Proctor, and Busse and Clever. 

The conclusion seems reasonable that the i-power law 
becomes valid only in low Prandtl number fluids for 
much higher values of the Rayleigh number. Measure- 
ments for characterizing the internal structure of the 

flow are required and. moreover. heat transfer 
measurements in sodium layers have to be performed 
up to even higher Rayleigh numbers of the order 

Ra - 10’” to resolve this uncertainty. 

The authors feel that there is little chance to estab- 
lish experimental conditions for Rayleigh numbers of 
the order Ra - IO”-10’“. which are typical for the 
Ledoux [27] and Spiegel [28] correlation Nu - Ra”’ 

derived for astrophysical conditions in gases of 

extremely low Prandtl number. 
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